Let
x
– a positive integer, and
k
– natural number from 1 to 10. Let
s(x, k)
be equal to the sum of the digits of the number
x
represented in base number system
k
.< /div>
Specified n
numbers a1
, a2
, ...
, an
. It is necessary to calculate the sequence bi
using the formula \(b_i = s(a_i, k_1) \cdot s(a_i, k_2)\ ). After that, sort the sequence bi
in non-descending order.
Input
The first line contains three integers: n
, k1
, k2 code> (\(1 <= n <= 1000\), \(2 <= k_1, k_2 <= 10\)). The second line contains n
integers: ai
(\(1 <= a_i < = 10^9\)).
Output
In response, output
n
numbers –
bi
in the required order.
Examples
# |
Input |
Output |
1 |
9 10 10
1 2 3 4 5 6 7 9 8
|
1 4 9 16 25 36 49 64 81 |
2 |
10 2 2
1 2 4 8 16 32 64 128 256 512
|
1 1 1 1 1 1 1 1 1 1 |