Let
S(n) denote the sum of the digits of
n in decimal notation. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer
n a Gromozeki number if for all positive integers
m such that m > ; n, the condition
\(\frac {S(n)}n <= \frac {S(m)}m\) is satisfied. Given an integer
K, list the
K of the smallest Gromozeka numbers.
Input
The input is an integer
K (K>=1, the K-th smallest Gromozeka number is not greater than 10
15).
Imprint
Output
K lines. The
i-th line should contain the
i-th lowest Gromozeka number.
Examples
| # |
Input |
Output |
| 1 |
10 |
1
2
3
4
5
6
7
8
9
19 |