Олимпиадный тренинг

Задача 38630. Gromozeka number


Let S(n) denote the sum of the digits of in decimal notation. For example, S(123) = 1 + 2 + 3 = 6. We will call an integer n a Gromozeki number if for all positive integers m such that m > ; n, the condition \(\frac {S(n)}n <= \frac {S(m)}m\) is satisfied. Given an integer K, list the K of the smallest Gromozeka numbers.

Input
The input is an integer K (K>=1, the K-th smallest Gromozeka number is not greater than 1015).

Imprint
Output K lines. The i-th line should contain the i-th lowest Gromozeka number.
 

 

Examples
# Input Output
1 10 1
2
3
4
5
6
7
8
9
19